Lithiation of *N*-Protected-dihydro-1,4-benzoxazines

Yansong J. Lu, Bin Hu,* Mahavir Prashad,* Shaum Kabadi [1], Oljan Repič and Thomas J. Blacklock

Lithiation of *N*-protected-2,3-dihydro-1,4-benzoxazines is described. Lithiation of *N*-(*tert*-butoxycarbonyl)-2,3-dihydro-1,4-benzoxazine (1) with BuLi/TMEDA occurred in the α -position to nitrogen on the heterocyclic ring, leading to the unexpected ring-opened product 3. On the other hand, lithiation of *N*methyl-2,3-dihydro-1,4-benzoxazine (4) took place at the oxygen-adjacent *ortho*-position of the aromatic ring.

J. Heterocyclic Chem., 43, 1125 (2006).

Introduction.

Neighboring group-assisted metalation is a powerful method in the synthesis of substituted aromatic compounds [2,3,4]. The N-tert-butoxycarbonyl (Boc) group has been reported to facilitate the ortho-lithiation of anilines [5] and α -lithiation of piperidines [6,7]. In tetrahydroquinoline only ortho-lithiation in the aromatic ring is reported [7]. However, metalation at the 2position in tetrahydroquinoline occurred if N-COOLi [8] was used instead of N-tert-butoxycarbonyl (Boc) group as the directing group. Methoxy group is also known to be a stronger directing metalation group than -NMe₂ [9,10]. Therefore, N-protected 2,3-dihydro-1,4-benzoxazines present an interesting heterocyclic system to study the lithiation to determine whether the ortholithiation will be directed by the N-Boc or the O-CH₂ group. To the best of our knowledge such a study with this heterocyclic system has not been reported in the literature [11]. In this article we describe our results on the directed lithiation of N-Boc and N-Me 2,3-dihydro-1,4-benzoxazines (1 and 4 respectively).

Results and Discussion.

N-(*tert*-Butoxycarbonyl)-2,3-dihydro-1,4-benzoxazine (1) [12] can be readily prepared from 2-aminophenol in two steps. Treatment of 1 with 2.0 equiv of BuLi/TMEDA interestingly led to the lithiation at the α -position to nitrogen in the heterocyclic ring leading to the unexpected ring-opening product 3 in 60% yield (Scheme 1). The structure of 3 was assigned based on spectroscopic data and confirmed by X-ray crystallography (ORTEP, Figure 1). The α -lithiation in the heterocyclic ring in **1** was in sharp contrast to the results reported with tetrahydroquinoline where *ortho*-lithiation exclusively occurred in the aromatic ring [7] suggesting that the ring oxygen in **1** is playing a significant role in the reversal of the directed lithiation [13].

Figure 1. ORTEP representation of the crystal structure of compound 3.

We then decided to study the lithiation with N-methyl-2,3-dihydro-1,4-benzoxazine (4) [14]. The desired compound 4 was obtained in quantitative yield in two steps by the treatment of compound 1 with conc. HCl in MeCN (to deprotect the N-Boc group), followed by Nmethylation of the resulting intermediate with BuLi/MeI. The lithiation in 4 occurred at the oxygen-adjacent orthoposition of the aromatic ring. Thus, when 4 was treated with 4.0 equiv of BuLi/TMEDA, followed by treatment of the resulting lithiated species 5 with MeI afforded 6 in 50% yield (Scheme 2). Similar results were obtained with *sec*-BuLi/TMEDA. The structure of $\mathbf{6}$ was confirmed by comparison of the spectral data with those of an authentic sample that was prepared starting from 2-amino-6methylphenol using the same method as used for the preparation of compound 4. Similarly, treatment of the lithiated species 5 with bis(trimethylsilyl)peroxide [15] afforded the phenol 7 in 30-40% yield (due to incomplete reaction). These results demonstrated that the lithiation in N-methyl-2,3-dihydro-1,4-benzoxazine (4) was directed by the O-CH₂ group over CH₃-N-CH₂.

Scheme 2

EXPERIMENTAL

Reaction of *N*-(*tert*-Butoxycarbonyl)-2,3-dihydro-1,4-benzoxazine (1) with Butyllithium.

To a cold (-20 °C) solution of TMEDA (tetramethylethylenediamine) (1.16 g, 10 mmol) in dry THF (20 mL), was added a solution of 1.6 M BuLi in hexane (6.25 mL, 10 mmol). The mixture was stirred at -20 °C for 10 min. Then a solution of N-(*tert*-butoxycarbonyl)-2,3-dihydro-1,4-benzoxazine (1; 1.175 g; 5.0 mmol) in THF (3 mL) was added at -20 °C. The reaction mixture was stirred at -20 °C for 1 h and then at 20 °C for 2 h. The reaction mixture was cooled to -20 °C and quenched with aqueous NH₄Cl (3.0 mL). THF was removed and isopropyl acetate (30 mL) and water (10 mL) were added to the mixture. This solution was washed with 20% citric acid (15 mL), water (20 mL), sat. aqueous NaHCO₃ (20 mL) and water (20 mL). The organic layer was dried over anhydrous sodium sulfate, concentrated and chromatographed over silica gel (some decomposition of the product was observed on silica gel) using i-PrOAc/heptane mixture as the eluant to afford pure 2-N-(tertbutoxycarbonyl)-N-vinyl-amino)phenol (3): 0.7 g (60%). mp: 114-116 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.31 (dd, J = 15.8 & 9.0 Hz, 1H), 7.28-7.23 (m, 2H), 7.07 (d, J = 9.0 Hz, 1H), 7.02 (d, J = 9.0 Hz, 1H), 6.99-6.93 (m, 1H), 5.16 (br s, 1H), 4.29 (d, J = 9.0 Hz, 1H), 3.96 (d, J = 15.8 Hz, 1H), 1.43 (s, 9H); 13 C NMR (150 MHz, CDCl₃): δ 152.65, 151.78, 133.25, 129.59, 129.48, 124.58, 121.12, 117.00, 94.05, 82.22, 28.07; m/z 221 [(M+1)+-Me], 136 [(M+1)⁺-BOC].

Anal. Calcd for C₁₃H₁₇NO₂: C, 66.36; H, 7.28; N, 5.95. Found: C, 66.24; H, 6.95; N, 6.02.

Reaction of *N*-Methyl-2,3-dihydro-1,4-benzoxazine (**4**) with Butyllithium and Iodomethane.

To a cold (-20 °C) solution of TMEDA (2.32 g, 20 mmol) in dry THF (20 mL), was added a solution of 1.6 M BuLi in hexane (12.5 mL, 20 mmol). The mixture was stirred at -20 °C for 10 min. Then a solution of N-methyl-2,3-dihydro-1,4-benzoxazine (4; 0.745 g; 5.0 mmol) in THF (3 mL) was added at -20 °C. The reaction mixture was stirred at -20 °C for 1 h and then at 20 °C for 2 h. The reaction mixture was cooled to -20 °C and iodomethane (22.5 mmol) was added. THF was removed and isopropyl acetate (30 mL) and water (10 mL) were added to the mixture. This solution was washed with 20% aqueous citric acid (15 mL), water (20 mL), sat. aqueous NaHCO₃ (20 mL) and water (20 mL). The organic layer was dried over anhydrous sodium sulfate, concentrated and chromatographed over silica gel using i-PrOAc/heptane mixture as the eluant to afford the pure 4,8-dimethyl-3,4-dihydro-2H-benzo[1,4]oxazine (6): 0.41 g (50%). ¹H NMR (600 MHz, CDCl₃): δ 6.85-6.70 (m, 1H), 6.65-6.50 (m, 2H), 4.40-4.25 (m, 2H), 3.35-3.20 (m, 2H), 2.87 (s, 3H), 2.17 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 142.40, 136.25, 125.19, 120.47, 120.21, 110.53, 64.80, 49.35, 39.13, 15.93; m/z 164 [(M+1)⁺].

Anal. Calcd for $C_{10}H_{13}$ NO: C, 73.59; H, 8.03; N, 8.58. Found: C, 73.61; H, 8.03; N, 8.38.

Reaction of *N*-Methyl-2,3-dihydro-1,4-benzoxazine (**4**) with Butyllithium and Bis(trimethylsilyl)peroxide.

An analogous reaction was performed employing *N*-methyl-2,3-dihydro-1,4-benzoxazine (**4**; 0.745 g; 5.0 mmol) and

bis(trimethylsilyl)peroxide (22.5 mmol) instead of iodomethane as the reagent. The crude product was chromatographed over silica gel using *i*-PrOAc/heptane mixture as the eluant to afford the pure 4-methyl-3,4-dihydro-2*H*-benzo[1,4]oxazin-8-ol (7): 0.33 g (40%). mp: 62-64 °C; ¹H NMR (600 MHz, CDCl₃): δ 6.72 (t, J = 8.0 Hz, 1H), 6.38 (dd, J= 8.0 Hz & 1.5 Hz, 1H), 6.27 (dd, J = 8.0 & 1.5 Hz, 1H), 5.40 (br s, 1H), 4.34 (t, J = 4.5 Hz, 2H), 3.27 (t, J = 4.5 Hz, 2H), 2.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 144.58, 136.72, 131.14, 120.96, 105.13, 104.87, 65.11, 49.19, 38.82; m/z 166 [(M+1)⁺].

Anal. Calcd for C₉H₁₁NO₂: C, 65.44; H, 6.71; N, 8.48. Found: C, 65.54; H, 6.80; N, 8.86.

Acknowledgements.

We thank Peter Karpinski of Novartis for arranging the X-ray structure determination of **3** and Professor M. Schlosser (Swiss Federal Institute of Technology Lausanne) for valuable suggestions.

REFERENCES AND NOTES

[1] Summer intern (2005) from The College of New Jersey, Ewing, New Jersey.

[2] V. Snieckus, Chem. Rev., 90, 879 (1990).

[3] M. C. Whisler, S. MacNeil, V. Snieckus and P. Beak, *Angew. Chem. Int. Ed.*, **43**, 2206 (2004).

[4] M. Schlosser in *Organometallics in Synthesis: A Manual* (ed.: Schlosser, M.), Wiley, Chichester, 2002 (second edition), pp 1-352, spec. 185-293.

[5] J. M. Muchowski and M. C. Venuti, J. Org. Chem., 45, 4798 (1980).

[6] P. Beak and W. K. Lee, J. Org. Chem., 55, 2578 (1990).

[7] P. Beak and W. K. Lee, *Tetrahedron Lett.*, **30**, 1197 (1989).

[8] A. R. Katritzky and S. Sengupta, J. Chem. Soc. Perkin Trans. I, 17 (1989).

[9] D. W. Slocum and C. A. Jennings, J. Org. Chem., 41, 3653 (1976).

[10] M. Skowronska-Ptasinska, W. Verboom, and D. N. Reinhoudt, J. Org. Chem., **50**, 2690 (1985).

[11] J. Ilas, P. S. Anderluh, M. S. Dolenc and D. Kikelj, *Tetrahedron*, **61**, 7325 (2005).

[12] C. Buon, L. Chacun-Lefevre, R. Rabot, P. Bouyssou and G. Coudert, *Tetrahedron*, **56**, 605 (2000).

[13] C. Margot and M. Schlosser, *Tetrahedron Lett.*, **26**, 1035 (1985).

[14] J. M. Flaniken, C. J. Collins, M. Lanz and B. Singaram, *Org. Lett.*, **1**, 799 (1999).

[15] L. Camici, P. Dembech, A. Ricci, G. Seconi and M. Taddei, *Tetrahedron*, **44**, 4197 (1988).